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INTRODUCTION

COFS III is the third project within the COFS program. It deals with developing
multibody dynamics and control technology for large space structures. It differs
from COFS I & II in two respects. First, it addresses a more complex class of
structure, and second it is basically a scale model ground test and analysis program
while COFS I & II feature shuttle flight experiments. The specific technology
thrusts within COFS III are model sensitivities, test methods, analysis validation,
systems identification, and vibration suppression.
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OBJECTIVE AND TECHNICAL APPROACH

The objective of COFS III is to develop a verified capability for predicting the
structural dynamics behavior of multibodied, joint dominated articualted, flexible
space structures, which are too large and heavy to be dynamically tested, when fully
mated, in earth's one-g environment.

The technical approach for achieving this capability is to demonstrate that a
combination of dynamically scaled model tests and theoretical analyses can provide a
credible method for predicting the dynamics behavior of the full-scale structure and
also provide a means for evaluating vibration control techniques.

OBJECTIVE:

• VERIFIED CAPABILITY FOR STRUCTURAL DYNAMICS
PREDICTION AND CONTROL OF

LARGE MULTI BODIED, JOINT DOMINATED

ARTICULATED, FLEXIBLE SPACE STRUCTURES

TECHNICAL APPROACH:

• DYNAMICALLY SCALED

MODEL TESTS _
PLUS

• THEORETICAL DYNAMICS
ANALYSIS

PREDICTION
OF

FULL-SCALE DYNAMICS
&

VIBRATION CONTROL
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PROJECT FOCUS

COFS Ill is a multibody dynamics and control technology project which focuses

on the Space Station structure. The Space Station was selected for several reasons.

First, it is the first very large operational structure planned to be built in space.

Second, it is typical of the structures of interest. Third, the Space Station will
provide the first opportunity to obtain direct full-scale measurements for

correlation with model tests and analysis, thereby providing for the validation of

the COFS Ill objectives. Fourth, studying the dynamics of the Space Station is the

first step in understanding and developing the technology for the growth Space

Station, which is one of Langley's roles in the overall Space Station effort.

SPACE STATION

• REAL STRUCTURE

• TYPICAL OF STRUCTURES OF INTEREST

• FIRST OPPORTUNITY TO OBTAIN FULL-SCALE
DATA FOR CORRELATION

- GROUND TEST OF KEY SUBASSEMBLIES

- ON-ORBIT FLIGHT DATA

• MEANS FOR DEVELOPING TECHNOLOGY FOR
GROWTH STATION
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PROPOSED LARGE SPACECRAFT LABORATORY (LSL) 

This  p i c t u r e  i s  an a r t i s t ' s  concept ion o f  t h e  COFS T I 1  model suspended i n  t h e  
proposed Large Spacecraf t  Laboratory  (LSL) which w i l l  be cons t ruc ted  a t  Langley i n  
1988. It has been designed t o  p rov ide  t h e  volume, dimensions, and suspension 
c a p a b i l i t i e s  necessary t o  pe rm i t  c o n t r o l l e d  ground t e s t s  of a v a r i e t y  of l a r g e  space 
s t r u c t u r e s  and models i n c l u d i n g  the  COFS I11 model. 
310 ft i n  diameter a t  t he  base and 150 f t  high. 

The dimensions o f  LSL a re  
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PROJECT ELEMENTS

The COFS III project elements include both contractual and in-house activities.
The first contractual effort is the just-completed model definition study by Lockheed
Missile and Space Company, the results of which will be added to this presentation
when they are available. These results will also be used by the project office to
help define the requirements for the development, fabrication, and assembly of a
modular model of the Space Station. The term modular means that the model will be
designed with interchangeable parts so that it can be assembled and tested in
configurations identical to any of the potential Space Station assembly sequences.
The contract will also require a system for suspending and testing the model within
the LSL; a set of modular analytical models that will be capable of being combined to
depict the structure at each stage of the Space Station assembly sequence; limited
test support for model tests which will be conducted at Langley; and an option for
designing and building the components required to convert the basic model into a
growth configuration of Space Station. The request for proposal (RFP) for this
competitive procurement is planned to be released in December with a contract award
in August, 1987.

The remaining two contractual efforts, one for an active vibration suppression
system and one for an advanced suspension system, will be pursued in parallel but a
year or two behind the main contract.

The in-house activities include joint and member scaling and characterization
studies and experiments, the actual testing and analysis of the model, and the data
correlation among the test results, analysis, and full-scale on-orbit data.

CONTRACTURAL

• MODEL DEFINITION STUDY (MAY 86)
• MODULAR MODEL OF SPACE STATION:

DESIGN, BUILD, ASSEMBLY

= BASIC SUSPENSION SYSTEM
- MODULAR ANALYTICAL MODELS

= LIMITED TEST SUPPORT
= OPTION FOR DESIGN & BUILD OF

EVOLUTIONARY SPACE STATION

• VIBRATION SUPPRESSION
• ADVANCED SUSPENSION

IN-HOUSE

RFP:
DEC 86

CONTRACT:
AUG 87

• JOINT & MEMBER SCALING/CHARACTERIZATION
• MODEL TESTING & ANALYSIS
• DATA CORRELATION
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RELATIONSHIP TO OTHER OAST ACTIVITIES

The schedule for the COFS III project shows the contract award in August
1987, the model delivery in January 1989, and the fully mated model tests beginning
in May 1990 when LSL becomes operational. Component and subassembly testing will
precede the fully mated model tests.

Superimposed above the schedule are those Research and Technology base
activities that support COFS III, while the relevant COFS I & II activities are
listed at the bottom.

ELEMENT

STRUCTURES

&

CONTROLS

BASE R&T

I FvSsI 86 i 8T i 88 i 8, ! ,o i 91 i ,2
ABVANAL.ETHOOS

(MULTIBODY. ROBOTICS) ) ......... _, _u_, u.L_ )

TION SUPPRES_TEM IDENTIFICA_

• TEST METHODS /_

COFS III

MULTIBODY

DYNAMICS

& CONTROL

MODEL GROWTH
DEFINITION MODEL MODEL

STUDY DELIVERED TESTS

MODEL MATED

CONTRACT MODEL

AWARD TESTS

COFS I & II
EFFECTS OF

SUSPENSION SYSTEM
INTERACTIONS

(_TESTaTECHNIQUE0

JOINT EFFECTS

TY LOADING OF JO_
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KEY TASKS

The key technical tasks required to complete the COFS III project are listed on
this chart. First we must understand the sensitivities of the various model

parameters in order to identify the best approaches for scaling the full-scale

structure. Then, hopefully, we will be able to design and construct dynamically

scaled models of both the IOC and growth configurations of the Space Station. The

next step will be to conduct a comprehensive ground test and analysis program using
the scaled model, the companion analytical models, and any active vibration
suppression techniques developed for the model.

The final step is to validate the predictions, which were made via the analyses
and modelground tests, with any full-scale subassembly ground tests that are

conducted during Space Station development and with Space Station flight data when it
is available.

Note that the instrumentation of the Space Station and the reduction of flight
data will be provided by another activity. As a minimum, the instrumentation for the

required on-orbit structural verfication of the Space Station should provide
sufficient data to validate the primary COFS III objective.

• EVALUATE MODELING SENSITIVITIES AND APPROACHES

• DESIGN AND CONSTRUCT A MODULAR SCALE MODEL
OF SPACE STATION

ISS
GROWTH STATION

• CONDUCT A COMPREHENSIVE GROUND TEST AND ANALYSIS
PROGRAM

ANALYSIS TOOLS
GROUND TEST METHODS
CONTROL METHODS

• VALIDATE ANALYSIS VIA CORRELATIONS WITH GROUND
TEST DATA AND SPACE STATION FLIGHT DATA

SPACE STATION FLIGHT INSTRUMENTATION AND FLIGHT
DATA REDUCTION TO BE PERFORMED UNDER A SEPARATE ACTIVITY
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TECHNICAL APPROACHES AND CHALLENGES

The two major challenges of this project are to (1) build as near a dynamics
replica model of the full-scale structure as possible and (2) properly test the
model. This chart lists four items that have a significant impact on these
challenges. Each will be discussed in more detail.

• MODEL DESCRIPTION

• SCALING CONSIDERATIONS

• ANALYSIS

• HARDWARE/GROUND TESTS
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DESIRED SCALE MODEL DESIGN FEATURES 

This chart shows representative schematics of b o t h  the I O C  and growth Space 
Station configurations and provides a summary description of the model using the IOC 
configuration shown as a baseline. 
subject t o  change, however. 
extensive review. The exact configuration t o  be used for  the COFS I11 model will be 
the one t h a t  will be identified a t  the Space Station System Design Requirements 
Review which i s  currently scheduled for December 1986. 
be the baseline for the current configuration review. 

The actual i n i t i a l  Space Station configuration is  
In f a c t ,  as  of t h i s  writing i t  i s  undergoing an 

That configuration should 

IOC Space ~ t a t i ~ n  Concept 

Growth Space ~~~~~o~ Concept 

3 56 



RATIONALE FOR USING DYNAMICALLY SCALED MODELS

The rationale for using dynamically scaled models to help predict the behavior
of very large space structures is shown here. First, many of these structures are too
large and heavy to be tested full scale. Second, the use of a model provides for a
significant improvement in the analytical capability for the reasons shown. Third,
in many instances the modeling of local flexibilities is overlooked when substructure
synthesis methods are applied. This leads to errors or the failure to identify
significant structural modes. Fourth, the model can uncover potential problems that
can influence the design. Finally, the investigation of anticipated flight maneuvers
and flight anomolies such as the degradation in performance from damaged, loose, or
missing truss members can be accomplished.

• MATED FULL-SCALE GROUND TESTS LIMITED BY
GRAVITY & SIZE

• SIGNIFICANT IMPROVEMENTS IN ANALYSIS CAPABILITY
POSSIBLE THROUGH:

- HANDS-ON EXPERIENCE WITH REALISTIC HARDWARE
- ACQUISITION OF MATED VEHICLE DATA PRIOR TO

FLIGHT

• MODELING OF LOCAL FLEXlBILITIES OVERLOOKED IN
SUBSTRUCTURES

• UNCOVER POTENTIAL PROBLEMS WHICH INFLUENCE DESIGN

• INVESTIGATION OF ANTICIPATED FLIGHT MANEUVERS
AND FLIGHT ANOMALIES
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SCALE MODEL DEFINITION STUDY

A scale model definition study was initiated in May 1986 with Lockheed Missile
and Space Company to help identify the scaling requirements for the COFS III model.
The study was just completed in November 1986. Six key topics were addressed.
First, an appropriate dual-keel hybrid Space Station configuration was selected as
the baseline for the study. Second, the issue of replication versus simulation was
investigated for each assembly phase, the IOC Space Station, the proposed SAVE flight
experiment, and the growth Space Station. Third, the manufacturability of scaled
joints and tubes was analyzed at a variety of scale factors. Fourth, the effects of
a candidate model suspension system were investigated. Fifth, the impact of facility
constraints was evaluated. And finally, the implications of expanding the model into
a growth configuration were investigated. The results of these activities will be
provided as soon as they are available.

• STUDY TASK INITIATED MAY 86 WITH LOCKHEED MSC

TASK: ESTABLISH OPTIMUM MODEL SCALE FACTOR
CONSIDERING THE FOLLOWING:

- DUAL-KEEL HYBRID SPACE STATION CONFIGURATION
- REPLICATION VERSUS SIMULATION FOR:

ASSEMBLY PHASE
IOC

SAVE FLIGHT EXPERIMENT
GROWTH

- COMPONENT MANUFACTURABILITY

e JOINTS • TUBES
- MODEL SUSPENSION EFFECTS
- FACILITY

• LIMITATIONS • AVAILABILITY

- EVOLUTIONARY CONFIGURATION
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VARIATION OF REPLICA SCALING

The selection of the model scale factor is a trade-off since all properties scale
differently. This chart shows some of these differences. The curves represent well
known theoretically derived replica scaling laws. It is our initial belief that for
the basic truss structure, replica scaling should be pursued to the maximum extent in
order to eliminate as much uncertainty as possible. For replica scaling,
accelerations and structural frequencies vary with the inverse of the scale factor,
thus they increase with decreasing scale factor. On the other hand, displacements
scale directly with the scale factor. Some quantities even vary over several orders
of magnitude, thus small changes in scale factor can significantly alter these
quantities.
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APPROXIMATE SCALE MODEL

Since the Space Station will be a large structure, sub-scale models of it will
be large also. This chart shows the dimensions and weights of the dual-keel IOC
configuration for scale factors from i to 1/4. Even a I/4-scale model will be 155 ft
x 90 ft x 29 ft which is about the size of a 727 aircraft.

APPROXIMATE SCALE MODEL SIZE & WEIGHT VS.
SCALE FACTOR

Dimensions (ft.)

SCALE FACTOR X Y Z WEIGHT (KIPS)
mmm m m

1 115 621 361 547

1/2 57.5 310.5 180.5 68.4

1/3 38.3 207 120.3 20.3

1/4 28.8 155.3 90.3 8.5

X
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EFFECT OF SCALE FACTOR ON MODEL FREQUENCY

The size of the model test facility can also place constraints on the selection

of the model scale factor. For example the LSL, which will be 310 ft in diameter at

the base and 150 ft high at the center, must provide sufficient test volume and

dimensions for not just the scale model but for the model and suspension system

combination. In addition the suspension system should have cable lengths such that

the ratio of the first model structural frequency over the suspension system pendulum

frequency is a factor of 5 or greater. This minimum frequency ratio of 5 should

insure adequate data quality thereby allowing the suspension system interactions to

be more easily identified and removed from the test results. This boundary is shown

by the vertical line on the lower figure. A scale factor of .25 is believed to be

the minimum for replica scaling such that the components can be manufactured within

the tolerances required while providing for their interchangeability. This boundary

is also shown on the figure. Thus the upper right quadrant represents the solution

space for the model, not considering test facility constraints. The diagonal line

represents the constraints imposed by the LSL facility. Thus a 1/3-scale model is

the largest COFS III scale model that could be tested in LSL and not violate the
above constraints.

SCALE
FACTOR

X

LSL_ SHADOW STRUCTURE

/[...... . .
!

_- MODEL
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ANALYTICAL CHALLENGES

In the area of analysis, there are many challenges. Some are listed on this
chart.

As was previously mentioned, the model contractor will provide modular
analytical models which can be configured to represent both the model and full-scale

station assembilies at each stage of the selected build-up process in space. The
degree of model fidelity required for each stage will be different, with more

emphasis on local effects being required in the early build-up stages while such

detail may not be required for those stages approaching the fully mated
configuration. How the joints will be characterized analytically is another

challenge, as is the means for analytically accounting for nonlinear effects.

Boundary conditions, earth conditions such as gravity effects and aerodynamic forces,

and suspension system interactions created by a multiplicity of suspension cables
pose unique analytical challenges. One of the main challenges will be the

extrapolation of sub-scale results to credible full-scale predictions.

Some preliminary analyses and a few tests have been conducted to give some

insight into these issues. These are presented next.

• VARYING LEVELS OF ANALYTICAL MODEL FIDELITY
REQUIRED FOR BUILD-UP STAGES

• JOINT CHARACTERIZATION

• NONLINEAR EFFECTS

• MODELING OF BOUNDARY CONDITIONS AND =EARTH
CONDITIONS"

• SUSPENSION SYSTEM INTERACTIONS _,

• EXTRAPOLATION OF SUB-SCALE RESULTS TO FULL SCALE
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EFFECT OF JOINT AXIAL STIFFNESS

This chart shows analytically the effect of joint axial stiffness on the Space
Station truss global frequencies. Specifically the variation in the truss frequency
with the stiffness ratio is depicted. This stiffness ratio is the ratio of the axial
stiffness of the strut to the axial stiffness of the joint. Note that for either
small or large values of the stiffness ratio, the truss frequency is somewhat
insensitive to small changes in this ratio; however, for intermediate values, small
changes in the stiffness ratio can lead to large changes in the truss frequency.
This implies the importance of accurately characterizing the joint stiffness.
Typically for truss structures, the goal is to design the joint to have a stiffness
ratio of approximately 2 or less so that the effective strut stiffness, including the
joint, is as high as possible.

f

f*

Effect of Joint Axial Stiffness

_ Space Station Truss Global Frequencies

--_ ___ L 7.,L_
Ttrut,s _'oint,j

_A/i"Jj

0.8,

0.6

0.4_

0.2_

0 ....... I
0.1 1.0

f*- f obtained with (EA)s= (EA)j

..... qJo ; ' "::,go : : : .... , _ (EA)s
• looo:ov (-_x)j
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SUSPENSION SYSTEM CONSIDERATIONS

The suspension system will add an additional measure of complexity to the
process of designing, testing, and analyzing the COFS III model. Some considerations
for the suspension system are shown here. Since we plan to replicate the basic Space
Station structure, the model will not be designed to sustain the unsupported I-G
loads of the payloads and modules. An implied requirement for the suspension system
is that it should allow the model to be tested without masking the model dynamics
characteristics, e.g., minimizing constraints such that coupled mode shapes can be
detected over a limited operating range. Because of the large number of concentrated
masses and joints, a large number of suspension cables will probably be required to
support the model. Also, as previously discussed, the facility size and model scale
factor determine the closeness of pendulum and model structural frequencies.
Finally, a concept such as the shadow structure, depicted at the bottom of the
figure, provides testing versatility, isolation from the structure of the facility,
and a simple method for attaching and detaching cables.

• SPACE STATION REPLICATION IMPLIES MODEL NOT DESIGNED TO SUSTAIN
UNSUPPORTED 1-G LOADS

• CABLE SUSPENSION SYSTEM DESIGN SHOULD NOT SIGNIFICANTLY ALTER
MODEL DYNAMICS

• LARGE CONCENTRATED MASSES & NUMBER OF JOINTS SUGGESTS NUMEROUS
CABLES REQUIRED

• FACILITY SIZE & MODEL SCALE FACTOR DETERMINE CLOSENESS OF PENDULUM AND
STRUCTURAL FREQUENCIES

• "SHADOW" STRUCTURE CONCEPT PROVIDES:
- MAXIMUM VERSATILITY IN CABLE ATTACHMENT LOCATIONS
- EASE IN ATTACHING/DETACHING CABLES

- PROVIDES ISOLATION FROM FACILITY

CABLES _ 6HADOW STRUCTURE

I# li--ll \ i_ilUlfll

_- MODEL '
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EXPLORATORY HARDWARE 

Some o f  the  exp lo ra to ry  hardware developed and tes ted  a t  Langley which i s  
r e l a t e d  t o  the  Space S t a t i o n  and scaled models and a l so  t o  COFS I 1 1  i s  shown on t h i s  
cha r t .  Seven bays of a f u l l - s c a l e  1 5 - f t  erectable s t ruc tu re ,  p l u s  seven bays o f  a 
1/4-scale d i sp lay  model of the  same st ructure,  are shown i n  t h e  upper l e f t  corner.  A 
p i c t u r e  o f  the  dynamics t e s t  setup fo r  the  1/4-scale model con f igured  as a seven-bay 
t r u s s  beam i s  shown a t  t he  lower l e f t .  A t  the upper r i g h t  i s  p i c t u r e d  a f u l l - s c a l e  
p ro to type e rec tab le  j o i n t  a long w i t h  a 1/4-scale model o f  t h a t  j o i n t .  The p i c t u r e  a t  
t he  lower  r i g h t  shows the  f u l l - s c a l e  j o i n t  undergoing s t a t i c  cha rac te r i za t i on  t e s t s .  

The r e s u l t s  o f  t he  t e s t s  o f  the  seven-bay 1/4-scale model t r u s s  s t r u c t u r e  and 
They w i l l  be discussed the  t e s t s  o f  the  f u l l - s c a l e  j o i n t s  are ra ther  i n t e r e s t i n g .  

next.  
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TEST AND ANALYSIS CORRELATION FOR 1/4-SCALE TRUSS 

The c o r r e l a t i o n  of t h e  t e s t s  and a n a l y s i s  of t h e  1/4-scale t r u s s  r e v e a l e d  t h e  
importance of account ing f o r  t h e  l o c a l  e f f e c t s  of t h e  i n d i v i d u a l  s t r u t s  i n  these 
s t r u c t u r e s  when they  a r e  l i g h t l y  mass loaded. The l o c a l  e f f e c t s  d r i v e  t h e  g l o b a l  
f requenc ies  h igher  than a s imp le  NASTRAN a n a l y s i s  p r e d i c t s .  A s imp le  BUNVIS model, 
which i s  based on exac t  f i n i t e  element technology and i s  e q u i v a l e n t  t o  d i s c r e t i z i n g  
t h e  s imp le  NASTRAN model i n t o  s m a l l e r  elements, i s  an improvement over  t h e  NASTRAN 
a n a l y s i s  b u t  r e s u l t s  i n  a s l i g h t  o v e r p r e d i c t i o n .  When t h e  j o i n t  f l e x i b i l i t i e s  a r e  
taken i n t o  account u s i n g  es t imates  o f  t h e  j o i n t  a x i a l  s t i f f n e s s ,  t h e r e  i s  an even 
b e t t e r  c o r r e l a t i o n .  

As mass i n  t h e  form o f  payloads and modules i s  added t o  t h i s  t y p e  o f  s t r u c t u r e ,  
t h e  l o c a l  e f f e c t s  w i l l  become l e s s  s i g n i f i c a n t  u n t i l  a t  some p o i n t  they  w i l l  n o t  
a p p r e c i a b l y  e f f e c t  t h e  g l o b a l  f requencies.  
i n v e s t i g a t e d  and w i l l  p robab ly  depend on t h e  number, masses, and placement o f  t h e  
pay1 oads and modules . 

E x a c t l y  where t h a t  occurs has n o t  been 

Al though t h e  1/4-scale model t e s t  r e s u l t s  j u s t  descr ibed a r e  encouraging, t h e  
model was n o t  a r e p l i c a  of t h e  f u l l - s c a l e  s t r u c t u r e .  The model was b u i l t  f o r  
demonstrat ion and d i s p l a y  purposes, n o t  as a t e s t  a r t i c l e .  
t o  r e p l i c a  sca l ing .  
s c a l e  s t r u c t u r e .  
o b t a i n  exper ience and t o  develop t e s t  and a n a l y s i s  techniques f o r  t h i s  t y p e  
s t r u c t u r e .  
t e s t e d  a t  Langley. 
j o i n t  e f f e c t s ,  suspensicn systems i n t e r a c t i o n s ,  and g r a v i t y  e f fec ts .  

L i t t l e  a t t e n t i o n  was p a i d  
Thus i t s  dynamics p r o p e r t i e s  p robab ly  do n o t  represent  t h e  f u l l -  

But ,  s i n c e  t h e  model was a v a i l a b l e  i t  prov ided an o p p o r t u n i t y  t o  

By t e s t i n g  t h i s  t y p e  o f  s t r u c t u r e  we w i l l  l e a r n  t o  account f o r  
F o r  these same reasons t h e  f u l l - s c a l e  seven-bay s t r u c t u r e  i s  a l s o  be ing  
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Test Analysis * 
(Frequency, Xz) (Frequency, Hz) 

Global Mode Number Simpie mcxlel Refined m&ei * * 
Nastran Bunvis Bunvis 

i 77.12 49.22 62-35 77.74 

2 78.62 56.62 89.41 79.1 5 

3 83.01 64.32 95.13 83.03 

* 1 Element per member 
* * Joint flexibilities taken into account 
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JOINT AND TRUSS MEMBER SCALING EXAMPLES 

As previously mentioned, one of the major considerations for the COFS I11 model 

The picture on the l e f t  shows a ful l -scale  prototype of one concept 

is replica scaling. 
exploratory development hardware being tested t o  give i n s i g h t  in to  the replica 
scaling issue. 
o f  a space s ta t ion jo in t .  
i s  the best replica j o i n t  t h a t  could be manufactured a t  1/4-scale by the same firm 
t h a t  b u i l t  the ful l -scale  hardware. B o t h  
the 1/4- and 1/3-scaled j o i n t s  are  undergoing characterization t e s t s  a t  Langley t o  
determine how well they replicate the s t i f fness  and damping properties o f  the f u l l -  
scal e hardware. 

T h i s  chart shows examples of some of Langley's i n i t i a l  

I t  i s  identical t o  the one previously described. Below i t  

Not shown is a 1/3-scale replica jo in t .  

A similar investigation of the replica scaling of graphite/epoxy s t r u t s ,  i s  also 
under way. 
Space S t a t i o n  t russ  members, a simple approach  was taken w i t h  these i n i t i a l  t e s t  
specimens by having a unidirectional f iber  orientation i n  the axial direction. T h i s  
provided the opportunity t o  scale the thickness of the wall merely by reducing the 
number of plies.  

Since there were many possible v a r i a t i o n s  as t o  ply orientation for  the 

Jaints G ~ a ~ ~ i t e  'Epoxy Tubes 

367 



ORIGINAL PAGE IS 
OF POOR QUALm 

TYPICAL FULL-SCALE SS JOINT STATIC TEST DATA 

Another interesting resul t of Langley ' s expl oratory development involves the 

The upper g raph  shows a 
tes t ing of a typical ful l -scale  Space Station jo in t .  
the joint/end connector assembly in the s t a t i c  t e s t  r i g .  
typical j o i n t  response curve which usually describes the displacement for loads of 
+lo00 pounds. The f i r s t  conclusion would be tha t  the response i s  essent ia l ly  l inear ;  
however, a look a t  a lower operating l o a d  range of 0-40 pounds, shown in the lower 
g r a p h ,  reveals def ini te  nonlinearit ies.  
j o in t  behavior a t  b o t h  load levels ,  low levels t o  simulate normal Space Station 
operations and high levels t o  simulate docking and reboosts. 

The picture a t  the l e f t  shows 

I t  will be important t o  characterize the 

Laad 

Load, 

3 

ibs , / 

tbs 
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GROUND TEST SCENARIO

This chart portrays the anticipated COFS III test scenarios. We have been
discussing some of the exploratory work related to the level I tests and some initial
incursions into the level II test area. When the COFS III model hardware is
delivered, we will be able to test a variety of subassemblies including the proposed
Structures and Assembly Verification Experiment (SAVE), which is a shuttle based
experiment involving a large section of the Space Station structure. In addition we
will investigate various multibody configurations including the buildup stages until
we finally reach the fully mated configuration. The mated configuration will be
tested extensively. Subsequent tests will include alternative growth Space Station
configurations and the evaluation of the dynamics interactions of various Space
Station experiments.

LEVEL I LEVEL il LEVEL iil

Elements

SCALING

JOINTS_

DAMPING

Subassembly

TRUSS STRUCTURE

MULTIBODY /'T7

ASSEMB_

SYSTEMS
IDENTIFICATION

Mated/Growth
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SUMMARY

In summary, the COFS III project is a technology project which will develop the
methods for using dynamically scaled models and analysis to predict the structural
dynamics of large space structures. The project uses the Space Station as a focus
because it is typical of the structures of interest and provides the first
opportunity to obtain full-scale on-orbit dynamics data. Finally it provides the
means for developing the technology for growth Space Station and Space Station
experiments.

• TECHNOLOGY PROJECT

SCALE MODEL TESTS
PLUS

ANALYSIS

• SPACE STATION FOCUS

[__ PREDICTION OFFULL-SCALE
STRUCTURAL

DYNAMICS

TYPICAL STRUCTURE
SOURCE FOR FULL-SCALE DATA

• DEVELOPS TECHNOLOGY FOR

GROWTH SPACE STATION
SPACE STATION EXPERIMENTS
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